17V-24V DC TO 48V DC BOOST CONVERTER WITH CLOSED LOOP CONTROL USING ARDUINO AND IGBT

Photo of author

By Jackson Taylor

THE CIRCUIT COMPONENTS IS USED HERE CAN HANDLE UP TO  400V DC AND 1000W.
COMPONENTS ARE USED HERE

  • IGBT – 25N120
  • DIODES – RHRP30120
  • IGBT DRIVER – TLP350
  • FEED BACK BY RESISTOR NETWORK
  • ATMEGA328 AT 31KHz PWM


PROGRAM
//feed back by 180k and 21.5k
//adc value —389 FOR 230V dc (1.89)
int outputtvolt=230, adcvalue=389;
int dutyratio=160,pwmpin=3;
void setup()
{
setPwmFrequency(pwmpin, 1);
analogWrite(pwmpin,dutyratio);
Serial.begin(9600);delay(10);
Serial.println(“BOOST CONVERTER 48V”);
}
void loop()
{
int a=analogRead(0);delay(100);
//a=a*.20;
a=(a*outputtvolt)/adcvalue;
Serial.println(a);delay(1);
/*
if(a>80)  ////case 1 –output is open state, ie no load
{
  dutyratio=0;
}
else */
if(a>50) ////case 2 –output is more voltage than requried
{
    dutyratio=dutyratio-1;
     if(dutyratio<1)dutyratio=0;
  analogWrite(pwmpin,dutyratio);
}
else if (a<10)  ////case 3–input is open state, ie no battery or solar
{
  dutyratio=160;
  analogWrite(pwmpin,dutyratio);
}
/*
else if (a<35)   ////case 4–input power is very low , ie  battery or solar just connected
{
  dutyratio=dutyratio+10;
  if(dutyratio>220)dutyratio=220;
  analogWrite(pwmpin,dutyratio);
}
*/
else if (a<45) ////case 5 –output is less voltage than requried
{
  dutyratio=dutyratio+1;
  if(dutyratio>220)dutyratio=220;
  analogWrite(pwmpin,dutyratio);
}
}
void setPwmFrequency(int pin, int divisor) {
  byte mode;
  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {
    switch(divisor) {
      case 1: mode = 0x01; break;
      case 8: mode = 0x02; break;
      case 64: mode = 0x03; break;
      case 256: mode = 0x04; break;
      case 1024: mode = 0x05; break;
      default: return;
    }
    if(pin == 5 || pin == 6) {
      TCCR0B = TCCR0B & 0b11111000 | mode;
    } else {
      TCCR1B = TCCR1B & 0b11111000 | mode;
    }
  } else if(pin == 3 || pin == 11) {
    switch(divisor) {
      case 1: mode = 0x01; break;
      case 8: mode = 0x02; break;
      case 32: mode = 0x03; break;
      case 64: mode = 0x04; break;
      case 128: mode = 0x05; break;
      case 256: mode = 0x06; break;
      case 1024: mode = 0x7; break;
      default: return;
    }
    TCCR2B = TCCR2B & 0b11111000 | mode;
  }
}
/**
 * Divides a given PWM pin frequency by a divisor.
 *
 * The resulting frequency is equal to the base frequency divided by
 * the given divisor:
 *   – Base frequencies:
 *      o The base frequency for pins 3, 9, 10, and 11 is 31250 Hz.
 *      o The base frequency for pins 5 and 6 is 62500 Hz.
 *   – Divisors:
 *      o The divisors available on pins 5, 6, 9 and 10 are: 1, 8, 64,
 *        256, and 1024.
 *      o The divisors available on pins 3 and 11 are: 1, 8, 32, 64,
 *        128, 256, and 1024.
 *
 * PWM frequencies are tied together in pairs of pins. If one in a
 * pair is changed, the other is also changed to match:
 *   – Pins 5 and 6 are paired on timer0
 *   – Pins 9 and 10 are paired on timer1
 *   – Pins 3 and 11 are paired on timer2
 *
 * Note that this function will have side effects on anything else
 * that uses timers:
 *   – Changes on pins 3, 5, 6, or 11 may cause the delay() and
 *     millis() functions to stop working. Other timing-related
 *     functions may also be affected.
 *   – Changes on pins 9 or 10 will cause the Servo library to function
 *     incorrectly.
 *
 * Thanks to macegr of the Arduino forums for his documentation of the
 * PWM frequency divisors. His post can be viewed at:
 *   http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1235060559/0#4
 *
 */

See also
HOW TO SEND OR RECEIVE SERIAL DATA IN PYTHON USING XCTU OR TO ARDUINO